Synthesis of 3,4,6,7-tetrahydro-1H-5,2-benzoxathionines by S-ylide rearrangement

Tomoko Kitano, N aohiro Shirai and Y oshiro Sato*
Faculty of Pharmaceutical Sciences, N agoya City U niversity, Tanabe-dori, M izuho-ku, Nagoya 467, J apan

Substituted 3,4,6,7-tetrahydro-1H-5,2-benzoxathionines 4 have been synthesized by the base-assisted aromatization of [2,3] sigmatropic rearrangement products 7 (substituted 1,3,4,11a-tetrahydro-6H -5,2benzoxathionines) of the S-ylides 3 , which were generated by the reaction of trans-3-(substituted phenyl)-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorate 2 with caesium fluoride in dimethyl sulfoxide (D M SO) at room temperature.

Introduction

Sommelet-H auser rearrangement of α-aryl-cycloammonium or -cyclosulfonium ylides is useful for three carbon enlargement of cyclic compounds. ${ }^{1,2}$ Fluoride ion-induced desilylation of [(trimethylsilyl)methyl]-ammonium or -sulfonium salts is suitable for these ylide reactions, since the ylides are regioselectively generated in quantitative yields. For example, we previously reported the syntheses of eight- to ten-membered cyclic amines and sulfides starting from 2 -phenyl-1-[(trimethylsilyl)methyl]cycloammonium ${ }^{3}$ or -cyclosulfonium salts. ${ }^{4}$ In this paper, we describe the synthesis of 3,4,6,7-tetrahydro-1H-5,2-benzoxathionines.

Results and discussion

Reaction of 3 -(substituted phenyl)-1,4-oxathianes 1a-h with (trimethylsilyl)methyl triflate (trifluoromethanesulfonate) gave mixtures of cis- and trans-isomers of 3 -(substituted phenyl)-4-(trimethylsilyl)methyl-1,4-oxathianium triflates which were crystallized as perchlorates 2a-h (Scheme 1, Table 1). The transconfiguration of the main products of $\mathbf{2 b}$ was confirmed by observation of NOE enhancement of a proton of the $\mathrm{CH}_{2} \mathrm{Si}$ group upon irradiation of the proton at position 3. The relation of the chemical shifts of the SiCH_{2} groups of trans- $\mathbf{2 b}$ and cis$\mathbf{2 b}$ (cis < trans) is the same as those of cis- and trans-1-phenyl-3,4-dihydro-1H-2-benzothiopyranium salts. ${ }^{4}$ Therefore, the major isomers of $\mathbf{2}$ were assigned a trans configuration and the minor isomers werecis.

When $\mathbf{2 c}$ was treated with caesium fluoride at room temperature in dimethyl formamide (DMF) or dimethyl sulfoxide (DM SO), which is a standard condition for desilylations, ${ }^{3}$ the product was a complex mixture in which the expected ringexpansion products were not detected by spectroscopic analyses (Table 2, entries 1, 3).
We previously reported that the reaction of S-methyl-S-[(trimethylsilyl)methyl](4-methoxybenzyl)sulfonium triflate with caesium fluoride also gave a complex mixture, but afforded methyl 2-methyl-4-methoxybenzyl sulfide (Sommelet-H auser rearrangement product) in high yield in the presence of DBU. ${ }^{5}$
When the reactions of $\mathbf{2 c}$ were repeated in the presence of DBU (5 mol equiv.), the product changed to a mixture of 3,4,6,7-tetrahydro-1H-5,2-benzoxathionine 4c, 2-(2-vinylbenzylsulfanyl)ethanol 5c, 2-(methylsulfanyl)ethyl 2-phenylvinyl ether $\mathbf{6 c}$ and $\mathbf{1 c}$ (entries 2, 4). The best result was obtained from the reaction in DM SO overnight (entry 5). The results with 2a-g under these conditions are shown in Table 3.

The total yields for all of the reactions are high, however, the ratios of $\mathbf{4}$ in the products from $\mathbf{2}$ increase in decreasing

Scheme 1 Reagents and conditions: $\mathrm{i}, \mathrm{M} \mathrm{e}_{3} \mathrm{SiCH}_{2} \mathrm{OTf}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 3 \mathrm{~h}$; ii, CsF, DBU, DM SO, RT, 24 h
order of the electron-donating effect of the para- and orthosubstituents (R^{3} and R^{1}), which is in direct opposition to the results with 1 . Compounds 4 are aromatization products of substituted 1,3,4,11a-tetrahydro-6H-5,2-benzoxathionines 7 which are $[2,3]$ sigmatropic migration products of ylides 3 (Scheme 2), and $\mathbf{5}$ may also be formed from $\mathbf{7}$ by an intramolecular [1,5] proton transfer. Compounds 1 and $\mathbf{6}$ may be formed from $\mathbf{3}$ by the elimination of carbene or by a Hofmann degradation process.
$[2,3]$ Sigmatropic rearrangement of benzylammonium N methylides occurs more quickly to electron-deficient benzene rings than to electron-rich rings. ${ }^{6}$ Similarly, the speed of the $[2,3]$ sigmatropic migration of $\mathbf{3}$ to $\mathbf{7}$ also decreases with an increase in the electron-donating abilities of the substituents

Table 1 3-(Substituted phenyl)-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorates 2

		R^{1}	R^{2}	Y ield (\%)	Ratio of cis to trans	$\delta_{\mathbf{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) \mathrm{SiCH}_{2}{ }^{\text {a }}$				
		cis					trans			
1	2a		H	OM e	60	4:96	1.98	2.41	2.20	3.02
2	2b	H	Me	73	5:95	2.00	2.23	2.19	3.08	
3	2c	H	H	83	5:95	1.98	2.48	2.23	3.05	
4	2d	H	CF_{3}	30	0:100	-	-	$2.59{ }^{\text {b }}$	$2.93{ }^{\text {b }}$	
5	2e	OMe	H	83	5:95	1.98	2.33	2.37	3.01	
6	2 f	Me	H	52	7:93	1.92	3.00	2.19	3.08	
7	2 g	CF_{3}	H	20	0:100	-	-	2.16	2.80	

${ }^{\mathrm{a}}$ Two hydrogens appeared as an AB quartet. ${ }^{\mathrm{b}} \mathrm{M}$ easured in $\mathrm{CD}_{3} \mathrm{OD}$.
Table 2 Reaction of 3-phenyl-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorate $\mathbf{2 c}$ with CsF

Entry	Solvent	A dditive	Reaction time (h)	Total yield (\%)	Product ratio ${ }^{\text {a }}$			
					4c	5c	6c	1c
1	D M F	-	1	-	Complex mixture			
2	D M F	DBU	1	69	75	3	1	21
3	DMSO	-	1	-		lex	ture	
4	DMSO	DBU	1	83	78	5	2	16
5	DMSO	DBU	24	96	80	6	1	13

${ }^{\text {a }}$ R atios of the products determined by integration of the ${ }^{1} \mathrm{H}$ signals at 500 M Hz .

Scheme 2
and, consequently, the ratio of degradation from $\mathbf{3}$ to $\mathbf{1}$ and $\mathbf{6}$ increases.

When the ${ }^{1} H N M R$ spectrum of the reaction mixture of 2a with caesium fluoride in $\left[{ }^{2} \mathrm{H}_{6}\right]$ dimethyl sulfoxide ($\left[{ }^{2} \mathrm{H}_{6}\right]$-D M SO) was measured after 30 min at room temperature, 7 a and 4-methyl-3-(4-methoxyphenyl)-1,4-oxathianium salt 8a were observed in a 15:85 ratio without 1a. Detection of $8 \mathbf{a}$ shows that the ylide 3a still remained in the reaction mixture and was protonated when the mixturewas transferred into an N M R glass tube The amount of 7a gradually increases in the absence of DBU, while it is decomposed to a complex mixture by water.
To clarify the relationship between the substituent effects of the R^{1} or R^{2} groups and the $[2,3]$ sigmatropic pathway, we examined the relationship between electronic effect of the substituents (e.g. chemical shifts in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the benzene rings, H ammett substituent constants of R^{2}, etc.) and the total yields of $\mathbf{4}$ and $\mathbf{5}$. We found a linear relationship

Table 3 Reaction of 3-(substituted phenyl)-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorates $\mathbf{2}$ with CsF at RT for 24 h in DM SO in the presence of DBU

Entry	Salt	Total yield (\%)	Product ratio ${ }^{\text {a }}$			
			4	5	6	1
1	2a	97	46	12	5	38
2	2b	95	63	8	2	27
3	2c	96	80	6	1	13
4	2d	99	96	4	0	0
5	2e	91	30	3	6	62
6	2 f	99	38	3	8	51
7	2g	90	60	10	12	18

${ }^{\text {a }}$ R atios of the products determined by integration of the ${ }^{1} \mathrm{H}$ signals at 500 MHz .
between the chemical shift in the ${ }^{13} \mathrm{C} N M R$ at the $\mathrm{C}-1$ carbons of the phenyl groups of $\mathbf{2}$ and the total yields of $\mathbf{4}$ and $\mathbf{5}$, except for ortho-methyl compound 2 ff (Fig. 1). However, it is still unclear how to explain this relationship, and why there is no correlation between the chemical shift of the C-2 carbons at which C-C bond-formation occurs.

Experimental

All reactions were carried out under N_{2}. DM SO was dried by distillation under reduced pressure from CaH_{2}. Diethyl ether (referred to as ether) was distilled from N a benzophenone ketyl. Benzene was distilled from Na . CsF was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ at $180^{\circ} \mathrm{C}$. Distillation was performed on a Büchi K ugelrohr distillation apparatus. All melting points and boiling points (oven temperature) are uncorrected. J Values are given in Hz .

3-(4-M ethoxyphenyl)-1,4-oxathiane 1a

3-Chloro-1,4-oxathiane was prepared from 1,4-oxathiane (2.5 $\mathrm{g}, 24 \mathrm{mmol}$) with N -chlorosuccinimide ($3.2 \mathrm{~g}, 24 \mathrm{mmol}$) in benzene ($25 \mathrm{~cm}^{3}$) as previously reported. ${ }^{7}$ This benzene solution was added to a solution of (4-methoxyphenyl)magnesium bromide, prepared from 4-bromoanisole ($4.5 \mathrm{~g}, 24 \mathrm{mmol}$) and magnesium turnings ($0.6 \mathrm{~g}, 25 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(25 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 24 h at RT and quenched with 20% $\mathrm{H}_{2} \mathrm{SO}_{4}\left(25 \mathrm{~cm}^{3}\right)$. The organic layer was separated and the aqueous layer was extracted with ether. The combined extracts were washed with 10% aqueous NaOH and water, dried $\left(\mathrm{M} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue

Fig. 1 Relation of the chemical shift $\left(\delta_{\mathrm{c}}, \mathrm{CDCl}_{3}\right)$ of the $\mathrm{C}-1$ or $\mathrm{C}-2$ carbon to the total yield (\%) of $\mathbf{4}$ and 5 .* M easured in $\mathrm{CD}_{3} \mathrm{OD}$.
was chromatographed on a silica gel column (hexane-ether, $8: 2$), and the eluent was distilled to give the oxathiane 1a ($2.3 \mathrm{~g}, 45 \%$), bp $140^{\circ} \mathrm{C} / 0.4 \mathrm{mmH}$ g; mp $61-63^{\circ} \mathrm{C}$ (Found: C, 62.5; $\mathrm{H}, 6.8 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 6.7 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br})$ / $\mathrm{cm}^{-1} 1610,1100$ and $675 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.49(1 \mathrm{H}$, ddd, J 1.8, 2.4, 14.0, 5-H), 3.09 (1 H , ddd, J 3.1, 11.6, 14.0, $5-\mathrm{H}$), 3.72 (1 H , ddd, J 1.8, 11.6, 12.2, 6-H), 3.73 (1 H , dd, J 10.4, 11.6, 2-H), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1$, 10.4, 3-H), 4.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1,11.6,2-\mathrm{H}$), 4.19 (1 H , ddd, J 2.4, 3.1, 12.2, 6-H) , $6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{ArH})$ and $7.27(2 \mathrm{H}$, d, J 8.6, ArH).

3-(4-M ethylphenyl)-1,4-oxathiane 1b

In a reaction similar to that described above, a benzene solution of 3 -chloro-1,4-oxathiane (52 mmol) was added to a solution of (4-methylphenyl)magnesium bromide, prepared from 4-bromotoluene ($8.7 \mathrm{~g}, 50 \mathrm{mmol}$) and magnesium (1.2 g , 50 mmol) in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$. The reaction mixture was treated as above to give the oxathiane $\mathbf{1 b}(4.7 \mathrm{~g}, 49 \%)$, bp $120^{\circ} \mathrm{C} / 0.5$ mmHg (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 7.15 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $\mathrm{C}, 68.0$; $\mathrm{H}, 7.3 \%) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1510,1280$ and $1105 ; \delta_{\mathrm{H}}(270 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.49(1 \mathrm{H}$, ddd, J $2.0,2.3,14.2$, $5-\mathrm{H}$), 3.09 (1 H , ddd, J 3.3, 11.6, 14.2, 5-H), 3.73 (1 H , ddd, J 2.0, 11.6, 11.7, 6-H), 3.75 (1 H, dd, J 9.9, 11.7, 2-H), 4.03 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0,9.9,3-\mathrm{H}$), 4.15 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0,11.7,2-\mathrm{H}$), 4.20 (1 H , ddd, J 2.3. 3.3, 11.7, 6-H) and 7.11-7.26 (4 H, m, ArH).

3-[4-(T rifluoromethyl) phenyl]-1,4-oxathiane 1d

In a reaction similar to that described above, a benzene solution of 3-chloro-1,4-oxathiane (9.6 mmol) was added to a solution of 4 -(trifluoromethyl)phenylmagnesium bromide, prepared from 4-bromo(trifluoromethyl)benzene ($2.0 \mathrm{~g}, 8.9 \mathrm{mmol}$) and magnesium ($0.2 \mathrm{~g}, 9.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3}\right)$. The reaction mixture was worked up to give the oxathiane 1d ($1.2 \mathrm{~g}, 54 \%$), $\mathrm{mp} 55-57^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 52.9$; $\mathrm{H}, 4.55 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{OS}$ requires C , 53.2; H, 4.5\%); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1620,1325$ and 1110; $\delta_{\mathrm{H}}(270$ $\left.\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.47(1 \mathrm{H}$, ddd, J 2.2, 3.3, 13.9, $5-\mathrm{H}$), 3.06 (1 H , ddd, J 3.3, 11.0, 13.9, 5-H), 3.78 (1 H , ddd, J 2.2, 11.0, 11.7, $6-\mathrm{H}), 3.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.5,12.1,2-\mathrm{H}), 4.08(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3,9.5$, 3-H), 4.17 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3,12.1,2-\mathrm{H}$), 4.20 (1 H , ddd, J 3.3, 3.3, 11.7, 6-H), 7.49 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH}$) and 7.59 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$, ArH).

3-(2-M ethoxyphenyl)-1,4-oxathiane 1e

In a reaction similar to that described above, a benzene solution of 3 -chloro-1,4-oxathiane (53 mmol) and a solution of (2methoxyphenyl)magnesium bromide, prepared from 2-bromoanisole ($9.9 \mathrm{~g}, 53 \mathrm{mmol}$) and magnesium ($1.3 \mathrm{~g}, 53 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ were treated as above to give the oxathiane le (3.25 g, 29\%), mp 71-73 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.65; H, 6.6. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 62.8 ; \mathrm{H}, 6.7 \%) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1600,1495,1250$ and $1100 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 2.54(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.3,2.6,13.9$, 5-H), 3.08 (1 H , ddd, J 3.3, 10.9, 13.9, 5-H), 3.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.6$,
11.6, 2-H), 3.70-3.90(1 H, m, 6-H), $3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.13$ (1 H, dd, J 3.0, 11.6, 2-H), 4.18 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.6,3.3,11.9,6-\mathrm{H}$), 4.58 (1 H, dd, J 3.0, 9.6, 3-H), 6.86 (1 H , d, J 8.3, ArH), 6.93 (1 H, dd, J 7.6, 7.6, ArH), 7.23 (1 H , ddd, J 1.3, 7.6, 8.3, A rH) and 7.42 (1 H, dd, J 1.3, 7.6, ArH).

3-(2-M ethylphenyl)-1,4-oxathiane 1 f

In the same way, a benzene solution of 3-chloro-1,4-oxathiane (100 mmol) and a solution of (2-methylphenyl)magnesium bromide, prepared from 2-bromotoluene ($17.1 \mathrm{~g}, 100 \mathrm{mmol}$) and magnesium ($2.4 \mathrm{~g}, 100 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ were treated as above to give the oxathiane $\mathbf{1 f}$ ($10.5 \mathrm{~g}, 54 \%$), bp $140^{\circ} \mathrm{C} / 1.0 \mathrm{mmH}$ g (Found: $\mathrm{C}, 67.7$; $\mathrm{H}, 7.45 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7.3 \%) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 1490,1250$ and 1105; $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.53(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.2,2.9,13.6$, 5-H), 3.12 (1 H, ddd, J 3.3, 11.4, 13.6, 5-H), 3.78 (1 H, ddd, J $2.2,11.4,11.7,6-\mathrm{H}$), 3.82 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.9,11.7,2-\mathrm{H}$), $4.14(1 \mathrm{H}$, ddd, J 0.7, 2.9, 11.7, 2-H), 4.22 (1 H, ddd, J 2.9, 3.3, 11.7, 6-H), 4.26 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.9,9.9,3-\mathrm{H}$), 7.16-7.20 (3 H, m, ArH) and 7.38-7.41 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

3-[2-(T rifluoromethyl)phenylf-1,4-oxathiane 1 g

In a reaction similar to that described above, a benzene solution of 3 -chloro-1,4-oxathiane (53 mmol) and a solution of [2(trifluoromethyl)phenyl]magnesium bromide, prepared from 2bromo(trifluoromethyl)benzene ($11.9 \mathrm{~g}, 53 \mathrm{mmol}$) and magnesium ($1.3 \mathrm{~g}, 53 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$, were treated as above to give the oxathiane $\mathbf{1 g}(3.5 \mathrm{~g}, 27 \%)$; bp $105^{\circ} \mathrm{C} / 0.9 \mathrm{mmHg}$ (Found: $\mathrm{C}, 53.1 ; \mathrm{H}, 4.6 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{OS}$ requires $\mathrm{C}, 53.2 ; \mathrm{H}, 4.5 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1605,1315$ and 1110; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}^{2} \mathrm{CDCl}_{3}\right) 2.54$ (1 H , ddd, J 2.0, 2.0, 13.9, 5-H), 3.17 (1 H , ddd, J 3.3, 11.6, 13.9, 5-H), 3.71 (1 H, dd, J 9.9, 11.6, 2-H), 3.77 (1 H , ddd, J 2.0, 11.6, 11.6, 6-H), 4.13 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0,11.6,2-\mathrm{H}$), 4.24 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.0$, 3.0, 11.6, 6-H), $4.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.0,9.9,3-\mathrm{H}), 7.37(1 \mathrm{H}, \mathrm{dd}$, J 7.6, 7.9, ArH), 7.54 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3,7.9, \mathrm{ArH}$), 7.65 ($1 \mathrm{H}, \mathrm{d}$, J $7.3, \mathrm{ArH})$ and $7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{ArH})$.

3-(4-M ethoxyphenyl)-4-(trimethylsilyl)methyl-1,4-ox athianium perchlorate 2a

(Trimethylsilyl)methyl triflate ($5.2 \mathrm{~g}, 22 \mathrm{mmol}$) was added to a solution of 1a ($4.21 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ at $3^{\circ} \mathrm{C}$ and the mixture was stirred at RT for 3 h . It was then evaporated under reduced pressure and the residue (viscous oil) was washed with $\mathrm{Et}_{2} \mathrm{O}$, dissolved in $\mathrm{CHCl}_{3}\left(20 \mathrm{~cm}^{3}\right)$ and stirred with aqueous $5 \mathrm{~m} \mathrm{NaClO}_{4}\left(8 \mathrm{~cm}^{3}\right)$ for 18 h . The mixture was extracted with CHCl_{3}. The extract was washed with water, dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ and concentrated to give the title salt 2a (4.76 g, 60%), mp $137-140^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 45.3; H, 6.3. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClO}_{6} \mathrm{SSi}$ requires $\mathrm{C}, 45.4 ; \mathrm{H}, 6.35 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1610, 1510, 1085 and $855 ; \delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ trans-2a: 0.15 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}$), $2.20(1 \mathrm{H}, \mathrm{d}$, J 14.0, CH 2), 3.02 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$, $\left.\mathrm{CH}_{2}\right), 3.67-3.73(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.79(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 3), 4.06(1 \mathrm{H}$, dd, J 10.6, 13.4, 2-H), 4.18 (1 H , ddd, J 5.5, 7.9, 14.0, 6-H), 4.24 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1,13.4,2-\mathrm{H}$), 4.45 (1 H , ddd, J 3.1, 3.1, 14.0, 6-H),
4.75 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1,10.4,3-\mathrm{H}$), 6.94 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5, \mathrm{ArH}$) and 7.42 (2 H, d, J 8.5, ArH); cis-2a: 0.14 ($9 \mathrm{H}, \mathrm{s}$), 1.98 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 14.0), 2.41 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$), $4.25-4.29(1 \mathrm{H}, \mathrm{m}), 4.32-4.39(1 \mathrm{H}$ $\mathrm{m})$, 4.57-4.62 ($1 \mathrm{H}, \mathrm{m}$), 5.07-5.10 ($1 \mathrm{H}, \mathrm{m}$) and $7.50(2 \mathrm{H}, \mathrm{d}$, J 8.9) (other signals overlapped trans-2a); $\delta_{\mathbf{c}}(125.7 \mathrm{M} \mathrm{Hz}$; CDCl_{3}); trans-2a: $-1.4(3 \mathrm{C}), 25.0,40.0,55.4,58.9,64.5,70.6$ 115.4 (2 C), 120.8, 130.6 (2 C) and 161.3.

3-(4-M ethylphenyl)-4-(trimethylsilyl)methyl-1,4-ox athianium perchlorate $2 b$

In a reaction similar to that described above, (trimethylsilyl)methyl triflate ($4.2 \mathrm{~g}, 18 \mathrm{mmol}$) was added to a solution of $\mathbf{1 b}$ ($2.3 \mathrm{~g}, 12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was worked up to give the title salt $\mathbf{2 b}(3.3 \mathrm{~g}, 73 \%), \mathrm{mp} 140-147{ }^{\circ} \mathrm{C}$ (not recrystallized) (Found: C, 47.2; H, 6.6. $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClO}_{5} \mathrm{SSi}$ requires C, 47.3; H, 6.6\%); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1515$ and 855 ; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ trans-2b: $0.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right), 2.19(1 \mathrm{H}$, d, J 13.9, CH ${ }_{2}$), $2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.08\left(1 \mathrm{H}, \mathrm{d}\right.$, J $13.9, \mathrm{CH}_{2}$), 3.71 ($1 \mathrm{H}, \mathrm{ddd}$, J $1.8,2.6,12.1,5-\mathrm{H}$), 3.78 (1 H , ddd, J 3.3, 11.7, 12.1, 5-H), 4.04 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,13.6,2-\mathrm{H}$), 4.16 (1 H , ddd, J 1.8, 11.7, 14.7, 6-H), 4.27 (1 H, dd, J 3.3, 13.6, 2-H), 4.49 (1 H, ddd, J 2.6, 3.3, 14.7, 6-H), 4.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3,10.6,3-\mathrm{H}$), 7.26 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{ArH}$) and $7.38(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{ArH})$; cis-2b: 0.15 ($9 \mathrm{H}, \mathrm{s}$), 2.00 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9$), 2.23 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9$), 4.33-4.42 ($\mathrm{H}, \mathrm{m}), 4.57-4.65(1 \mathrm{H}, \mathrm{m}), 5.19-5.21(1 \mathrm{H}, \mathrm{m})$ and $7.45(2 \mathrm{H}, \mathrm{d}$, J 8.1) (other signals overlapped trans-2b). NOE enhancement was observed 3% at $\delta 3.05\left(\mathrm{CH}_{2}\right)$ and 6% at $\delta 4.26(2-\mathrm{H})$ under irradiation at $\delta 4.95(3-\mathrm{H}) ; \delta_{\mathrm{c}}\left(125.7 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ trans-2b: -1.3 (3 C), 21.3, 24.9, 39.8, 59.0, 64.6, 70.6, 126.0, 129.0 (2 C), 130.7 (2 C) and 141.1.

3-P henyl-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorate

 2cIn a reaction similar to that described above, (trimethylsilyl)methyl triflate ($12.6 \mathrm{~g}, 53 \mathrm{mmol}$) was added to a solution of phenyl-1,4-oxathiane ${ }^{7} 1 \mathrm{c}(8.0 \mathrm{~g}, 44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and the mixture was worked up to give the title salt $\mathbf{2 c}$ (13.5 g , 83%), mp $113^{\circ} \mathrm{C}$ (not recrystallized) (Found: C, 45.6; H, 6.2. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{ClO}_{5} \mathrm{SSi}$ requires $\left.\mathrm{C}, 45.8 ; \mathrm{H}, 6.3 \%\right)$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 1585, 1075 and $845 ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ trans-2c: 0.14 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}$), $2.23\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9, \mathrm{CH}_{2}\right.$), $3.05(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.9$, CH_{2}), 3.70-3.78 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $4.07(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.6,13.4$ 2-H), 4.15-4.23 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.27 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3,13.4$, 2-H), 4.43-4.50 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.83 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.3,10.6$, 3-H), 7.42-7.47 (3 H, m, ArH) and 7.48-7.53 (2 H, m, ArH) cis-2c: 0.11 ($9 \mathrm{H}, \mathrm{s}$), 1.98 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.3$), 2.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.3$), 3.87-3.96 ($2 \mathrm{H}, \mathrm{m}$), 4.28-4.42 ($2 \mathrm{H}, \mathrm{m}$), 4.62-4.67 ($1 \mathrm{H}, \mathrm{m}$), 5.13-5.17 ($1 \mathrm{H}, \mathrm{m}$) and 7.54-7.58 ($\mathrm{m}, 2 \mathrm{H}$) (other signals overlapped trans-2c); $\delta_{\mathrm{c}}\left(125.7 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ trans-2c: -1.4 (3 C), 25.2. 40.0, 59.0, 64.5, 70.5, 129.1 (2 C), 129.4, 130.0 (2 C) and 130.7.

trans-3-[4-(T rifluoromethyl)phenyl]-4-(trimethylsilyl)methyl-1,4oxathianium perchlorate trans-2d

In a reaction similar to that described above, (trimethylsilyl)methyl triflate ($9.5 \mathrm{~g}, 40 \mathrm{mmol}$) was added to a solution of 1 d ($8.0 \mathrm{~g}, 32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ and the mixture was worked up to give thetitle salt trans-2d ($4.15 \mathrm{~g}, 30 \%$), mp $193^{\circ} \mathrm{C}$ (not recrystallized) (Found: C, 41.1; H, 5.1. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{CIF}_{3} \mathrm{O}_{5} \mathrm{SSi}$ requires C, 41.4; $\mathrm{H}, 5.1 \%) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1620,1325$ and 855 ; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 0.21\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right), 2.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$, CH_{2}), $2.93\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0, \mathrm{CH}_{2}\right.$), $3.62(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.7,11.0$, 12.8, 5-H), 3.88 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.4,3.0,12.8,5-\mathrm{H}$), 4.18 (1 H , ddd, J 2.4, 11.0, 14.0, 6-H), 4.27 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,14.0,2-\mathrm{H}$), 4.41 (1 H, dd, J 3.1, 14.0, 2-H), 4.53 (1 H, ddd, J 3.0, 3.7, 14.0, 6-H) and $4.81-4.83(1 \mathrm{H}, 3-\mathrm{H}$; theJ value was not determined due to overlapping with a signal of $\left.\mathrm{CD}_{3} \mathrm{OH}\right)$ and 7.82-7.89 (4 H, m, ArH); $\delta_{\mathrm{c}}\left(125.7 \mathrm{M} \mathrm{Hz;} \mathrm{CD}_{3} \mathrm{OD}\right)-1.4$ (3 C), 26.4, 41.0, 59.9 , 65.3, 70.9, 125.1 (q, J 271), 127.8 (2 C, q, J 3), 131.4 (2 C), 133.5 ($q, J 32$) and 135.7.

3-(2-M ethoxyphenyl)-4-(trimethylsilyl)methyl-1,4-ox athianium perchlorate 2e
In a reaction similar to that described above, (trimethylsilyl)methyl triflate ($3.7 \mathrm{~g}, 16 \mathrm{mmol}$) was added to a solution of 1 e ($3.0 \mathrm{~g}, 14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ and the mixture was worked up to give the title salt $2 \mathrm{e}\left(4.7 \mathrm{~g}, 83 \%\right.$), $\mathrm{mp} 127^{\circ} \mathrm{C}$ (not recrystallized) (Found: $\mathrm{C}, 45.2 ; \mathrm{H}, 6.1 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClO}_{6} \mathrm{SSi}$ requires C, $45.4 ; \mathrm{H}, 6.35 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1600,1080$ and 850 ; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right)$ trans-2e: $0.17(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} 3$), $2.37(1 \mathrm{H}$, d, J 14.1, CH ${ }_{2}$), $3.01\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1, \mathrm{CH}_{2}\right), 3.65(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.6$, 9.5, 12.6, 5-H), 3.73 (1 H, ddd, J 2.2, 4.0, 12.6, 5-H), 3.92 (3 H , $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.12(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 2.2,9.5,13.9,6-\mathrm{H}), 4.29(2 \mathrm{H}, \mathrm{d}$, J 6.2, 2-H), 4.47 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.6,4.0,13.9,6-\mathrm{H}), 4.86(1 \mathrm{H}, \mathrm{t}$, J 6.2, 3-H), 6.99 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1, \mathrm{ArH}$), 7.05 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3$, 7.7, ArH) , 7.45 (1 H , ddd, J $1.5,7.3,8.1, \mathrm{ArH}$) and 7.56 (1 H , dd, J 1.5, 7.7, ArH); cis-2e: 0.07 ($9 \mathrm{H}, \mathrm{s}$), 1.98 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1$), 2.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.1$), 4.35-4.42 ($1 \mathrm{H}, \mathrm{m}$), 4.65-4.71 ($1 \mathrm{H}, \mathrm{m}$) and 5.16-5.20 ($1 \mathrm{H}, \mathrm{m}$) (other signals overlapped trans-2e); $\delta_{\mathrm{c}}\left(125.7 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3}\right)$ trans-2e: -1.4 (3 C), 25.2, 39.2, 53.9, $55.7,63.7,68.4,111.6,117.4,121.8,131.0,132.4$ and 157.6.

3-(2-M ethylphenyl)-4-(trimethylsilyl)methyl-1,4-oxathianium perchlorate $2 f$

In a reaction similar to that described above, (trimethylsilyl)methyl triflate ($2.0 \mathrm{~g}, 8 \mathrm{mmol}$) was added to a solution of $\mathbf{1 f}$ ($1.33 \mathrm{~g}, 7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was worked up to give the title salt $2 f(1.4 \mathrm{~g}, 52 \%), \mathrm{mp} 149-153^{\circ} \mathrm{C}$ (from EtOH-Et O) (Found: $\mathrm{C}, 47.1 ; \mathrm{H}, 6.6 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{ClO}_{5} \mathrm{SSi}$ requires C, 47.3; H, 6.6\%); $v_{\text {max }}(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1460,1090$ and $855 ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ trans-2f: $0.15\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right), 2.19(1$ $\left.\mathrm{H}, \mathrm{d}, \mathrm{J} 13.8, \mathrm{CH}_{2}\right), 2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.8, \mathrm{CH}_{2}\right)$, 3.73-3.79 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 3.86-3.98 ($2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 5-\mathrm{H}$), 4.15$4.22(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}, 6-\mathrm{H}), 4.47(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.0,3.0,14.0,6-\mathrm{H})$, 4.99 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.1,10.4,3-\mathrm{H}$), $7.25-7.38$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.43-7.47 (1 H, m, ArH); cis-2f: 0.07 ($9 \mathrm{H}, \mathrm{s}$), 1.92 ($1 \mathrm{H}, \mathrm{d}$, J 14.7), $2.53(3 \mathrm{H}, \mathrm{s}), 3.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.7), 4.05-4.15(1 \mathrm{H}, \mathrm{m})$, 4.23-4.38 ($2 \mathrm{H}, \mathrm{m}$), 4.69-4.75 ($1 \mathrm{H}, \mathrm{m}$) and 5.11-5.16 ($1 \mathrm{H}, \mathrm{m}$) (other signals overlapped trans-2f); $\delta_{\mathrm{c}}\left(125.7 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) trans-2f: -1.5 (3 C), 19.6, 25.4, 40.0, 55.9, 64.5, 70.6, 127.5, $127.7,127.8,130.2,132.0$ and 138.3.

trans-3-[2-(T rifluoromethyl)phenyl]-4-(trimethylsilyl)methyl-1,4ox athianium perchlorate trans-2g

In a reaction similar to that described above, (trimethylsilyl)methyl triflate ($3.2 \mathrm{~g}, 14 \mathrm{mmol}$) was added to a solution of 1 g ($3.0 \mathrm{~g}, 12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(15 \mathrm{~cm}^{3}\right)$ and the mixture was worked up to give the title salt trans-2g ($1.1 \mathrm{~g}, 20 \%$), mp $148{ }^{\circ} \mathrm{C}$ (not recrystallized) (Found: $\mathrm{C}, 41.2 ; \mathrm{H}, 4.9 . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{CIF}_{3} \mathrm{O}_{5} \mathrm{SSi}$ requires C, 41.4; H,5.1\%); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 1315$ and 850 ; $\delta_{\mathrm{H}}\left(500 ; \mathrm{CDCl}_{3}\right) 0.13\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right), 2.16\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0, \mathrm{CH}_{2}\right)$, $2.80\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0, \mathrm{CH}_{2}\right), 3.65(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.1,10.4,12.2,5-\mathrm{H}$), 4.98-4.03 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 4.08 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.4,14.0,2-\mathrm{H}$), 4.24 (1 H, dd, J 3.7, 14.0, 2-H), 4.37 (1 H, ddd, J 1.8, 10.4, 13.4, $6-\mathrm{H}$), 4.49 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 3.1,3.1,13.4,6-\mathrm{H}$), 4.69 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 3.7$, 10.4, 3-H), 7.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3,7.9, \mathrm{ArH}$), 7.78-7.86 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ -1.5 (3C), 27.3, 41.7, 56.5, 64.4, 71.0, 123.6(q, J 273), 127.3 (q, J 5), 128.0, 129.8 (q, J 30), 130.8 (2 C) and 134.1.

Reaction of 2a with C sF in the presence of D BU

Salt 2a ($397 \mathrm{mg}, 1 \mathrm{mmol}$) was placed in a $20-\mathrm{cm}^{3}$ flask equipped with a magnetic stirrer, a septum and a test tube connected to the flask by a short piece of rubber tubing. CsF ($0.76 \mathrm{~g}, 5$ mmol) was placed in the test tube. The apparatus was dried under reduced pressure and flushed with N_{2}. DM SO $\left(4 \mathrm{~cm}^{3}\right)$ and $D B U(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ were added to the flask with syringes and then CsF was added from the test tube. The mixture was stirred for 24 h at RT, poured into water ($50 \mathrm{~cm}^{3}$) and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with water, dried ($\mathrm{M} \mathrm{gSO}_{4}$) and concentrated under reduced pressure. The residue (213 mg)
was chromatographed on a silica gel column ($\mathrm{Et}_{2} \mathrm{O}$-hexane, 10:90 to 50:50) to give 2-(5-methoxy-2-vinylbenzylsulfanyl)ethanol 5a, 2-(4-methoxyphenyl)vinyl 2-(methylsulfanyl)ethyl ether $6 \mathbf{a}$ and a mixture of 10 -methoxy-3,4,6,7-tetrahydro-1H -5,2-benzoxathionine 4a and $\mathbf{1 a}$. Compounds 4a and $\mathbf{1 a}$ were separated by an HPLC column (μ Bondasphere $5 \mu \mathrm{Si}-100 \AA$, $\mathrm{Et}_{2} \mathrm{O}$-hexane, 5:95 to 50:50). The product ratio was determined from the integrated values of the proton signals in the ${ }^{1} \mathrm{H}$ NM R spectrum of the residue. The results are listed in Table 2.

Compound 4a: bp $90^{\circ} \mathrm{C} / 0.8 \mathrm{mmHg}$ (Found: C, 64.2; H, 7.2. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.25 ; \mathrm{H}, 7.2 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1610$, 1500,1260 and 1110; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.04(2 \mathrm{H}, \mathrm{t}$, J 5.0, 3-H), 2.76(2 H, br, 7-H), 3.76(2 H,t,J 5.0, 6-H), 3.80 (2 $\mathrm{H}, \mathrm{br}, 4-\mathrm{H}), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.00(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.75(1 \mathrm{H}$, dd, J 3.0, 8.9, ArH), $6.97(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.0, \mathrm{ArH}$) and $6.98(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.9, ArH).

Compound 5a: an oil (Found: C, 63.9; H, 6.95. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.2 ; \mathrm{H}, 7.2 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3425,1605,1495$ and 1255; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right.$) 2.13 ($1 \mathrm{H}, \mathrm{br}, \mathrm{OH}$), 2.69 (2 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{SCH}_{2}\right), 3.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{OCH}_{2}\right), 3.77(2 \mathrm{H}, \mathrm{s}$, ArCH_{2}), $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.25(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.3,10.9$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.58\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.3,17.5, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.76-6.83(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 6.99\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.9,17.5, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.46(1 \mathrm{H}, \mathrm{d}$, J 7.9, ArH).

Compound 6a: an oil (Found: C, 64.0; H, 7.05. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires C, 64.25; H, 7.2\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1650,1510,1245$ and 1155; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{H} \mathrm{z} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 2.80$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{SCH}_{2}\right), 3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6$, $\left.\mathrm{OCH}_{2}\right), 5.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9, \mathrm{ArCH}=\mathrm{CH}), 6.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7$, ArH), $6.86(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9, \mathrm{ArCH}=\mathrm{CH})$ and $7.15(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7$, ArH).

Reaction of 2a with CsF in [${ }^{2} \mathrm{H}_{6}$ \}-D M SO

In a manner similar to that described above, 2a ($119 \mathrm{mg}, 0.3$ mmol) was treated with CsF ($0.22 \mathrm{~g}, 1.5 \mathrm{mmol}$) in [${ }^{2} \mathrm{H}_{6}$]-D M SO $\left(1.2 \mathrm{~cm}^{3}\right)$ for 0.5 h . An aliquot of the mixture was placed in a glass tube and the ${ }^{1} \mathrm{H}$ NMR spectra were measured. The presence of 10-methoxy-1,3,4,11a-tetrahydro-6H-5,2-benzoxathionine 7a and 3-(4-methoxyphenyl)-4-methyl-1,4-oxathianium salt 8a in a 15:85 ratio was estimated by the integrated values

Compound 7a: $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}\right.$; $\left.{ }^{2} \mathrm{H}_{6}\right]$-DM SO) 1.75-1.90 (1 H , m), 2.00-2.10 ($1 \mathrm{H}, \mathrm{m}$), 2.57-2.77 ($2 \mathrm{H}, \mathrm{m}$), 2.94 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4.0$, 14.2), 3.46 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), 5.08 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.3,5.9,11-\mathrm{H}$), $5.75-$ $5.88(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}, 9-\mathrm{H})$ and $6.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.9,8-\mathrm{H})$; other signals overlapped with the signals of 8 a and are difficult to specify.

Compound 8a: $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz}\right.$; ${ }^{2} \mathrm{H}_{6}$]-DM SO) $2.90(3 \mathrm{H}, \mathrm{s}$, SCH_{3}), $3.43(1 \mathrm{H}, \mathrm{m} 5-\mathrm{H}), 3.73-3.83(1 \mathrm{H}, \mathrm{m})$, $3.75(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 12.2), 4.23-4.30(2 \mathrm{H}, \mathrm{m}), 4.37(1 \mathrm{H}, \mathrm{d}$, J 13.9), 4.76 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7$), $7.05(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH})$ and 7.45 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4, \mathrm{ArH}$).

Reaction of 2 b with CsF in the presence of DBU

In a manner similar to that described for compound 2a, a mixture of $\mathbf{2 b}(381 \mathrm{mg}, 1 \mathrm{mmol}), \mathrm{CsF}(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ and D BU (0.76 g , 5 mmol) in D M SO ($4 \mathrm{~cm}^{3}$) was treated as above The residue (195 mg) of the ethereal extract was chromatographed on a silica gel column (ether-hexane, 10:90 to 50:50) to give 2-(5-methyl-2-vinylbenzylsulfanyl)ethanol 5b, 2-(4-methylphenyl)vinyl 2 -(methylsulfanyl)ethyl ether $\mathbf{6 b}$ and a mixture of 10 -methyl-3,4,6,7-tetrahydro-1H-5,2-benzoxathionine 4b and $\mathbf{1 b}$. Compound $\mathbf{4} \mathbf{b}$ was isolated by distillation of the mixture. The presence of $\mathbf{l b}$ was confirmed by ${ }^{1}$ H NM R and GLC analyses. Compound 4b: bp $110^{\circ} \mathrm{C} / 1.0 \mathrm{mmH}$ g (Found: $\mathrm{C}, 69.0 ; \mathrm{H}, 7.7$. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 7.7 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1500,1110$ and 1045; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M}_{4} \mathrm{Si}\right) 2.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.3,3-\mathrm{H})$, $2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.78(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.6,7-\mathrm{H}), 3.71(2 \mathrm{H}, \mathrm{br}, 6-\mathrm{H})$, $3.77(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.3,4-\mathrm{H}), 4.01(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.94-6.98(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.25(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

Compound 5b: an oil (Found: C, 68.8; H, 7.8. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 7.7 \%)$; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3395,1610$ and 1045 ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 1.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.33(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.70\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{SCH}_{2}\right), 3.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{OCH}_{2}\right), 3.77$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}$), $5.31\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.3,11.2, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.66 (1 H, dd, J 1.3, 17.5, CH=CH $)^{2}, 6.99-7.10\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right.$, ArH) and 7.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{ArH}$).

Compound 6b: an oil (Found: C, 68.9; H, 7.7. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires C, 69.2; H, 7.7\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640$ and 1154; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 2.31(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{ArCH}_{3}\right), 2.81\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{SCH}_{2}\right), 4.01\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{OCH}_{2}\right)$, 5.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 13.0, ArCH=CH), 6.95 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 13.0$, Ar$\mathrm{CH}=\mathrm{CH})$ and $7.05-7.14(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reaction of $\mathbf{2 c}$ with C sF in the presence of DBU

In a manner similar to that described for 2b, 2c ($381 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathrm{CsF}(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ and DBU ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$) were allowed to react in D M SO $\left(4 \mathrm{~cm}^{3}\right)$. The residue (130 mg) of the ethereal extract was chromatographed to give 2-(2-vinylbenzylsulfanyl)ethanol 5c, 2-(methylsulfanyl)ethyl 2-phenylvinyl ether $6 \boldsymbol{c}$ and a mixture of 3,4,6,7-tetrahydro-1H-5,2-benzoxathionine $\mathbf{4 c}$ and $\mathbf{1 c}$. Compound $\mathbf{4 c}$ was isolated by distillation of the mixture.

Compound 4c: bp $100^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ (Found: C, $67.8 ; \mathrm{H}$, 7.35. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7.3 \%$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1490$ and $1110 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.15(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9,3-\mathrm{H})$, $2.95(2 \mathrm{H}$, br s, $7-\mathrm{H}), 3.85(2 \mathrm{H}$, br s, $6-\mathrm{H}), 3.90(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9$, 4-H), 4.18 ($2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 7.18-7.20 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.28-7.32 $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.37-7.41(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.56-7.58(1 H , m, ArH).

Compound 5 c : bp $120^{\circ} \mathrm{C} / 1.0 \mathrm{mmHg}$ (Found: $\mathrm{C}, 67.7 ; \mathrm{H}, 7.4$. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7.3 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3395$, 1050 and $770 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.10(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$, $2.68\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.1, \mathrm{SCH}_{2}\right), 3.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.1, \mathrm{OCH}_{2}\right), 3.80$ ($2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}$), $5.36\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.2,11.0, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 5.70 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.2,17.4, \mathrm{CH}=\mathrm{CH}_{2}$), $7.09(1 \mathrm{H}, \mathrm{dd}$, J 11.0, 17.4, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.20-7.30(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3$, ArH).
Compound 6c: an oil (Found: C, 67.8; H, 7.2. $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}$ requires $\mathrm{C}, 68.0 ; \mathrm{H}, 7.2 \%)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1640,1230,1150,750$ and 695; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 2.81$ ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{SCH}_{2}$), $4.02\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{OCH}_{2}\right), 5.87(1 \mathrm{H}$, d, J 12.9, $\mathrm{ArCH}=\mathrm{CH}$), $6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9, \mathrm{ArCH}=\mathrm{CH})$ and 7.13-7.42 (5 H , m, A rH).

Reaction of 2 c with C sF

In a reaction similar to that described above, $\mathbf{2 c}$ and CsF were allowed to react in DM F or DM SO in the presence or absence of D BU. The results are listed in Table 2.

Reaction of 2 d with C sF in the presence of D BU

In a reaction similar to that described for 2b, 2d ($435 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathrm{CsF}(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ and DBU ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$) were allowed to react in D M SO $\left(4 \mathrm{~cm}^{3}\right)$. The residue $(258 \mathrm{mg})$ of the ethereal extract was chromatographed to give 10 -(trifluoro-methyl)-3,4,6,7-tetrahydro-1H-5,2-benzoxathionine 4d and 2-[5-(trifluoromethyl)-2-vinylbenzylsulfanyl]ethanol 5d.

Compound 4d: bp $90^{\circ} \mathrm{C} / 0.2 \mathrm{mmH}$ g (Found: C, 54.9; H, 5.1. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{OS}$ requires $\left.\mathrm{C}, 54.95 ; \mathrm{H}, 5.0 \%\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1620$, 1335 and 1110; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.5$, $3-\mathrm{H}), 2.88(2 \mathrm{H}, \mathrm{br}$ s, $7-\mathrm{H}), 3.74(2 \mathrm{H}, \mathrm{br}$ s, $6-\mathrm{H}), 3.79(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 5.5, 4-H), 4.09 ($2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), $7.19(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{ArH}), 7.42(1 \mathrm{H}$, dd, J $1.5,7.9, \mathrm{ArH}$) and $7.73(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 1.5, \mathrm{ArH})$.
Compound 5d: an oil (Found: C, 54.8; H,5.0. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{OS}$ requires C, 54.95; H, 5.0\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3410,1330$ and $1120 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right), 2.00(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 2.68$ (2 $\left.\mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{SCH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{OCH}_{2}\right), 3.83(2 \mathrm{H}, \mathrm{s}$, ArCH_{2}) $5.48\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 10.9, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 17.2$, $\mathrm{CH}=\mathrm{CH}_{2}$), $7.06\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.9,17.2, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.45-7.49(2$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and $7.59(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6, \mathrm{ArH})$.

Reaction of 2e with C SF in the presence of DBU

In a reaction similar to that described for 2b, 2e ($397 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathrm{CsF}(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ and DBU ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$) were allowed to react in DM SO $\left(4 \mathrm{~cm}^{3}\right)$. The residue (196 mg) of the ethereal extract was chromatographed to give 2-(3-methoxy-2-vinylbenzylsulfanyl)ethanol 5e, 2-(2-methoxyphenyl)vinyl 2(methylsulfanyl)ethyl ether 6e and a mixture of 8-methoxy-3,4,6,7-tetrahydro-1H-5,2-benzoxathionine 4 e and 1 e . Compound $4 \mathbf{e}$ was isolated by distillation of the mixture.

Compound 4e: bp $110^{\circ} \mathrm{C} / 1.5 \mathrm{mmH}$ (Found: $\mathrm{C}, 63.85 ; \mathrm{H}, 6.8$. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.25 ; \mathrm{H}, 7.2 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1580$, 1465,1250 and $1110 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.05(2 \mathrm{H}, \mathrm{t}$, J 4.6, 3-H), $2.91(2 \mathrm{H}, \mathrm{br}, 7-\mathrm{H}), 3.65-3.88(4 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}, 6-\mathrm{H}), 3.81$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}$), $4.04(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 6.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.0,8.4, \mathrm{ArH}$), 7.02 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.0,7.6, \mathrm{ArH}$) and $7.22(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.6,8.4, \mathrm{ArH}$).

Compound 5e: an oil (Found: C, 63.9; H, 7.0. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.25 ; \mathrm{H}, 7.2 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3395,1575$ and $1260 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.70$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{SCH}_{2}\right), 3.71\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{OCH}_{2}\right), 3.82(2 \mathrm{H}$, s, ArCH_{2}) , $3.83\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 5.58(1 \mathrm{H}, \mathrm{dd}$, J $2.3,13.9$ $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.71\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.3,17.8, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.75-7.00(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{ArH}\right), 6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6, \mathrm{ArH})$ and $7.18(1 \mathrm{H}, \mathrm{t}$, J 7.6, ArH).

Compound 6e: an oil (Found: C, 64.0; H, 7.1. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 64.25 ; \mathrm{H}, 7.2 \%$); $v_{\max }($ film $) / \mathrm{cm}^{-1} 1720$ and 1245 ; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{H} \mathrm{z;} \mathrm{CDCl} 3 ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right), 2.82(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 6.6, SCH 2), $3.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{OCH} 2), 6.07$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 12.9, $\mathrm{ArCH}=\mathrm{CH}$), $6.85(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2, \mathrm{ArH}), 6.91(1 \mathrm{H}$ t, J 7.6, ArH), $7.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.9, \mathrm{ArCH}=\mathrm{CH}), 7.14(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}$ 1.7, 7.6, 8.2, ArH) and 7.23 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.7,7.6, \mathrm{ArH}$).

Reaction of $2 f$ with CsF in the presence of DBU

In a manner similar to that described for 2b, 2f (381 mg, 1 $\mathrm{mmol}), \mathrm{CsF}(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ and DBU ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$) were allowed to react in D M SO $\left(4 \mathrm{~cm}^{3}\right)$. The residue (200 mg) of the ethereal extract was chromatographed on a silica gel column (ether-hexane, 5:95 to 50:50) to give 8-methyl-3,4,6,7-tetra-hydro-1H-5,2-benzoxathionine 4f, 2-(3-methyl-2-vinylbenzylsulfanyl)ethanol 5f, 2-(2-methylphenyl)vinyl 2 -(methylsulfanyl)ethyl ether $\mathbf{6 f}$ and $\mathbf{1 f}$.

Compound 4f: bp $110^{\circ} \mathrm{C} / 0.4 \mathrm{mmH}$ g (Found: C, 68.9; H, 7.7. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires $\mathrm{C}, 69.2 ; \mathrm{H}, 7.7 \%$); $v_{\text {max }}$ (film)/ $\mathrm{cm}^{-1} 1460$ and $1110 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right), 1.99(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.0,3-\mathrm{H}$), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.85(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.0,7-\mathrm{H}), 3.72(4 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.0$, 4-H, 6-H), 4.05 ($2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}$), 7.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{ArH}$), 7.14 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4, \mathrm{ArH}$) and $7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4, \mathrm{ArH})$.

Compound 5f: an oil (Found: C, 69.0; H, 7.8. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires C, 69.2; H, 7.7\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3395,1575,1465$, 1260 and 1070; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.10(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.69\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{SCH}_{2}\right), 3.70(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9$, OCH_{2}), $3.78\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{2}\right), 5.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.8,18.0$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 5.59\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.8,11.4, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.80(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 11.4, 18.0, $\mathrm{CH}=\mathrm{CH}_{2}$) and 7.08-7.29 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Compound 6f: an oil (Found: C, 69.0; H, 7.8. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{OS}$ requires C, 69.2; H, 7.7\%); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1720,1600,1245$, 1025 and $755 ; \delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz;} \mathrm{CDCl} 3 ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{3}\right)$, $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.83\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{SCH}_{2}\right), 4.04(2 \mathrm{H}, \mathrm{t}$, J 6.6, OCH 2), $6.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.7, \operatorname{ArCH}=\mathrm{CH}), 6.82(1 \mathrm{H}, \mathrm{d}$, J $12.7, \mathrm{ArCH}=\mathrm{CH}$) and $7.08-7.28(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Reaction of 2 g with CsF in the presence of DBU

In a reaction similar to that described above, $\mathbf{2 g}$ ($435 \mathrm{mg}, 1$ $\mathrm{mmol}), \mathrm{CsF}(0.76 \mathrm{~g}, 5 \mathrm{mmol})$ and DBU ($0.76 \mathrm{~g}, 5 \mathrm{mmol}$) were
allowed to react in D M SO $\left(4 \mathrm{~cm}^{3}\right)$. The residue (236 mg) of the ethereal extract was chromatographed on a silica gel column to give 8-(trifluoromethyl)-3,4,6,7-tetrahydro-1H-5,2-benzoxathionine 4 g and 2 -[3-(trifluoromethyl)-2-vinylbenzylsulfanyl]ethanol $\mathbf{5 g}$. Isolation of pure samples of $\mathbf{1 g}$ and $2-[2-$ (trifluoromethyl)phenyl]vinyl 2-(methylsulfanyl)ethyl ether 6 g failed because of insufficient separation from $\mathbf{4 g}$.

Compound 4g: mp $106-107^{\circ} \mathrm{C}$ (Found: C, 54.8; H, 5.1. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{OS}$ requires C, 54.95; $\left.\mathrm{H}, 5.0 \%\right)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1590$, 1465,1320 and 1115; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz} ;{ }^{2} \mathrm{H}_{6}\right.$-D M SO; $\mathrm{M} \mathrm{e}_{4} \mathrm{Si}$; $\left.120^{\circ} \mathrm{C}\right) 2.14(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9,3-\mathrm{H}), 3.00-3.06(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 3.75$ (2 H, t, J 4.9, 4-H), 3.77 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 4.9,6-\mathrm{H}$), $4.16(2 \mathrm{H}, \mathrm{s}, 1-\mathrm{H}), 7.49$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.3,7.9, \mathrm{ArH}$), $7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9, \mathrm{ArH}$) and 7.75 (1 H, d, J 7.3, ArH).

Compound 5g: an oil (Found: C, 54.8; $\mathrm{H}, 5.0 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{OS}$ requires C, 54.95; H,5.0\%); $v_{\max }(\mathrm{N}$ ujol $) / \mathrm{cm}^{-1} 3350,1460,1320$ and 1125; $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{M} \mathrm{e}_{4} \mathrm{Si}\right) 2.05(1 \mathrm{H}, \mathrm{t}, \mathrm{OH}), 2.69$ $\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5.9, \mathrm{SCH}_{2}\right), 3.73\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J} 5.9, \mathrm{OCH}_{2}\right), 3.83(2 \mathrm{H}, \mathrm{s}$, ArCH_{2}), $5.24\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 1.3,17.8, \mathrm{CH}=\mathrm{CH}_{2}\right) 5.57(1 \mathrm{H}$, dd, J $1.3,11.9, \mathrm{CH}=\mathrm{CH}_{2}$), $6.90\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.9,17.8, \mathrm{CH}=\mathrm{CH}_{2}\right.$), 7.33 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.6, \mathrm{ArH}$) and 7.53-7.60 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Compound 6g: $\delta_{\mathrm{H}}\left(270 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3} ; \mathrm{Me}_{4} \mathrm{Si}\right) 2.21(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SCH}_{3}\right), 2.83\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{SCH}_{2}\right), 4.06\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6, \mathrm{OCH}_{2}\right)$, $6.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5, \mathrm{ArCH}=\mathrm{CH})$ and $6.94(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.5$, $\mathrm{ArCH}=\mathrm{CH}$) (aromatic proton signals overlapped with those of 4g).

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (N 0.08672437) provided by the M inistry of Education, Science and Culture, J apan.

R eferences

1 M. Hesse, Ring Enlargement in Organic Chemistry, VCH , N ew York, 1991, p. 83; E. Vedejs, Acc. C hem. Res., 1984, 17, 358; I. E. M arkó, in Comprehensive Organic Synthesis, eds. B. M. Trost and I. F leming, Pergamon Press, Oxford, 1991, vol. 3, p. 913; R. Brückner, in C omprehensive Organic Synthesis, eds. B. M. Trost and I. F leming, Pergamon Press, Oxford, 1991, vol. 6, p. 873.
2 V. Ceré, C. Paolucci, S. Pollicino, E. Sandri and A. Fava, J. Org. Chem., 1981, 46, 3315; P. Cotelle, B. Hasiak, D. Barbry and D. Couturier, Chem. Lett., 1987, 1007

3 N. Shirai, F. Sumiya, Y. Sato and M. H ori, J. O rg. Chem., 1989, 54, 836; F. Sumiya, N. Shirai and Y. Sato, C hem. P harm. Bull., 1991, 39, 36; T. K itano, N. Shirai and Y. Sato, Synthesis, 1991, 996; T. K itano, N. Shirai and Y. Sato, C hem. Pharm. Bull., 1992, 40, 768; T. K itano, N. Shirai, M . M otoi and Y. Sato, J. C hem. Soc., Perkin T rans. 1, 1992, 2851; Y. Sato, N. Shirai, Y. M achida, E. Ito, T. Yasui, Y. K urono and K. Hatano, J. Org. Chem., 1992, 57, 6711; A Sakuragi, N. Shirai, Y. Sato, Y. K urono and K. Hatano, J. Org. Chem., 1994, 59, 148; N. K awanishi, N. Shirai, Y. Sato, K. Hatano and Y. Kurono, J. Org. Chem., 1995, 60, 4272.

4 T. Tanzawa, N. Shirai, Y. Sato, K . H atano and Y. K urono, J. C hem. Soc., Perkin Trans. 1, 1995, 2845.
5 T. Tanzawa, M. Ichioka, N. Shirai and Y. Sato, J. Chem. Soc., Perkin Trans. 1, 1995, 431.
6 T. Tanaka, N. Shirai and Y. Sato, C hem. P harm. Bull., 1992, 40, 518.
7 D. L. Tuleen and R. H. Bennett, J. Heterocycl. Chem., 1969, 6, 115.

Paper 6/05423D

R eceived 2nd A ugust 1996
A ccepted 29th O ctober 1996

